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Flg 1 Comparison of two methods for computation of Z-matrix of rectan-

gular planar segments.

tion of input impedance Zin. The number of terms summed up

are indicated on two curves. It may be noted that, if the al-

gorithm proposed in this paper is used, the number of terms

needed for 1 percent accuracy is 10, while for 0.1 percent accu-

racy the number of terms needed is 35.

III. CONCLUSIONS

A method for faster computations of Z-matrices for rectangu-

lar segments in planar microstnp circuits has been presented. As

seen by the sample comparison presented, the proposed method

yields a dramatic increase in computational efficiency.
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On Gain-Bandwidth Product for Distributed

Amplifiers

R. C. BECKER AND J. B. BEYER, SENIOR MEMBER, IEEE

Abstract — Contours of constant gain-bandwidth product as a function of

the gate and drain attenuation factors are presented. Design tradeoffs are
established. It is shown that only one design achieves maximum gain-band-

width, although many possible choices approach thk maximum. The curves

also lead to the specification of active device parameters when circuit

requirements are known.

I. INTRODUCTION

In a previous paper by Beyer et al. [1], a graphical design

technique was presented which included a curve showing maxi-

mum gain-bandwidth product. It will be shown in this paper that

the previously presented curve is actually a portion of a more

general series of contours of varying gain-bandwidth product. We

also show that for the choice of a particular MESFET, there

exists only one design for a distributed amplifier that offers

maximum gain-bandwidth, however a large number of designs

may closely approach this maximum.

In designing microwave-distributed amplifiers, it is usually

desirable to attempt to achieve the maximum gain-bandwidth

product allowed by the choice of a particular transistor. Because

of the nonlinear relationship in a distributed amplifier between

gain and bandwidth, their product is influenced by circuit param-

eters in a complex manner. In this paper, we present a set of

curves that augment the graphical techniques presented in [1] and

show design tradeoffs clearly.

II. GAIN-BANDWIDTH CONTOURS

Expressing 18 of [1] in terms of – 3-dB bandwidth yields

~of- 3 dB = 4KX- 3dB.fm.~ (1)

where

A = dc gain

~. ~~B = half-power frequency

K=@e-b

X–s dB = f. 3& /fC bandwidth normalized to the

line cutoff frequency

f~= = MESFET maximum frequency of oscillation.
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Fig. 2. Normalized gain-bandwidth contours.

The factors K and X_ ~~E are functions of the gate and drain line.-—
attenuations as shown in [1], and since the ‘,4 J ~~~ product

cannot exceed f~a, the KX. ~~~ product in (1) cannot exceed

0.25. If one plots the KX_3~~ product as a function of the gate

and drain line attenuation factors a and b, respectively, as

defined in [1], the result is the surface shown in Fig. 1. One cars

easily see that the previously presented maximum gain-band-

wid~ product curve lies near the crest of the KX product surface

of Fig. 1. Furthermore, one can see that there is a single maxi-

mum for gain-bandwidth at a = 0.75, b = 0.32, and that the

predicted maximum has a value of 0.255. That this value is about

2 percent greater than the expected value of 0.25 is a result of the

approximations used for the attenuation of the gate and drain

transmission lines in the equations used to arrive at X_ ~d~ in (l).

When the data are presented in the form of Fig. 2, all of the

design techniques of [1] can be readily applied.

The curves presented in Figs. 1 and 2 have their foundation in

the behavior of X_ ~~~ and K in the a – b plane. Microwave

MESFET-distributed amplifier behavior is controlled by gate and

drain line attenuation. From the normalized bandwidth curves

presented in [1], one can state in general that the practical

bandwidth increases as one approaches the b-axis and decreases

as the a-axis is approached. Furthermore, normalized gain in-

creases as one approaches the a-axis and decreases as the b-axis

is approached. Thus, we have the product of an increasing

function and a decreasing function along each axis and this type

of functional behavior gives rise to the contours of Figs. 1 and 2.

Because these contours close, there is only one design for the

distributed amplifier which yields the maximum gain-bandwidth

product; all others are suboptimal. This is not to say that it is
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Fig. 3. Distributed amplifier-frequency response

mandatory to design for maximum gain-bandwidth. If the poten-

tiaf gain-bandwidth exceeds the amplifier requirements, the de-

signer can choose a suboptimal design which meets the stipulated

gain and bandwidth specifications. The frequency response of a

distributed amplifier showing relative gain versus frequency nor-

malized to the line cutoff for an optimal design (a= 0.75, b =

0.32) amplifier is shown in Fig. 3. The – 3-dB bandwidth is about

0.74.

III. DEVICE DESIGN

If one were to consider designing an active device for use

specifically in distributed amplifiers, these curves take on greater

significance. Equation 15 in [1] gives the dc gain of a distributed

amplifier as

sinh( b)
AO = :( R01R02)1’2 e-b.

sinh( b/N)
(2)

Using the definition of sinh( b) and the small argument ap-

proximation to sinh( b/N), we find

‘“g””& l-4:”2b”(3)

Using 12 and 13 in [1] which define the a and b factors, we find

Rg=a. ROl/N (4)

(5)

as the gate and drain parasitic resistances. From the definitions

of RO1, R02, and f,,, one can show

1
Cg, = —

~fc Rol

1
cd, . —

~fc R02

(6)

(7)

In deriving (6) and (7), it was assumed that the phase-velclcity

matching constraint of equal gate- and drain-transmission line

cutoff frequencies is met, although small deviations from exact

matching may be beneficial to overall performance [2].

The use of these equations may be demonstrated by desigming

a hypothetical amplifier. The amplifier is required to have 15-dB

low-frequency gain, a 20-GH2 – 3-dB bandwidth, and 50-L? input
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and output impedances. The a and b coefficients are chosen to

achieve the maximum gain-bandwidth which sets a = 0.75 and

b = 0.32.

At this point, the choice of device g~ must be made. It must

be chosen with some care as it determines the number of devices

N, which also affects the parasitic resistances Rg and RJ~, Using

(3), we choose to set N = 8 and solve for g~ = 38 mmhos. From

Fig. 2, at (a, b) = (0.75,0.32), X = 0.74. Since we require f_ ~~~ =

20 GHz, this sets jC = 27 GHz. Based upon these values, the

remaining values are

Cg, = 0.23 pF

Rg = 4.7 Q

Cd, = 0.235 PF

R~, = 312 Q.

The transistor is now completely specified. The fact that Cg, and

Cd, are equaf results because the input and output line imped-

ances have been set equal to one another.

III. CONCLUSION

We have shown that the maximum normalized gain-bandwidth

curve in [1] is a small portion of the more general gain-bandwidth

contours. There is a“maximum which corresponds to the optimum

design of a distributed amplifier, Constraint-free design equa-

tions for transistors specifically intended for use in distributed

amplifiers were also presented.
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Dispersion of Picosecond Pulses in Coplanar

Transmission Lines

G. HASNAIN, A. DIENES, AND J.R. WHINNERY

Abstract —The dispersion of coplanar-~ transmission lines has been

extended to the terahertz regime to examine the distortion of picosecond

electrical pulses. Dispersion of coplanar wavegnides is compared to equiv-

alent microstrip lines. Agreement with available experimental data is

demonstrated for coplanar strips, An approximate dispersion formula for

coplanar waveguides is also reported for CAD applications.

I. INTRODUCTION

Picosecond electrical pulses generated by opto-electronic

switches [1] have several hundred gigahertz bandwidth and are

therefore much dispersed within a few millimeters of travel, even

on high-frequency transmission lines such as microstrips and

coplanar waveguides. Dispersion characteristics have been in-
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Two examples of a coplanar-type transmission lines, (a) Coplanar

strips (CPS). (b) Coplanar waveguide (CPW).

vestigated thoroughly for the popular microstrip line [2], but

published data for coplanar lines are usually limited to about 50

GHz. In previous papers [3], [4], we examined the dispersion of

picosecond pulses in microstrip lines. In this paper, we extend the

dispersion relation of coplanar-type transmission lines into the

terahertz regime and use the result to compute distortion of

picosecond pulses propagating in such lines.

II. ~ORY

The spectral domain analysis method used here was first pro-

posed for slot lines by Itoh and Mittra [5] and later extended by

Knorr and Kuchler [6] to coupled slots and coplanar strips. For

the purpose of clarity, the main steps of the analysis are briefly

reiterated. T~ical coplanar transmission lines consist of two or

more metal strips separated by slots on a dielectric substrate (Fig.

1). The problem is to find the solution to the wave equation in an

inhomogeneous medium with inhomogeneous boundary condi-

tions. Since the metaf discontinuities lead to difficulties in de-

fining the boundary conditions in the transverse direction, the

scalar potentials rpe,h( x, y) are transformed into the Fourier

domain. Thus, the Hehnholtz wave equation is converted to an

ordinary differential equation whose solutions are given by:

%(~,y) =A(Lz)e-Y1(Y-d) (1)

CA(a,y) = B(a) sinh(y2y) +C(a)cosh(y2y) (2)

q3(a, y) =D(a)ey’y (3)

2 = a2 + /?2 – U2poCoC,, i = 1,2,3 define the regions, a iswhere yi

the transform variable corresponding to the x-variation, and /3 is

the propagation constant in the longitudinal direction. Using the

continuity conditions at y = O

EZ2 = EZ3 ; EXZ = EX3 ; HZ2 = H,j ; HX2 = HX3 (4)
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